MMD-based Aggregated Two-Sample Test

Antonin Schrab ${ }^{1,2,3}$, Ilmun Kim 4, Mélisande Albert ${ }^{5}$, Béatrice Laurent ${ }^{5}$, Benjamin Guedj ${ }^{2,3}$, and Arthur Gretton ${ }^{1}$
${ }^{1}$ Gatsby Computational Neuroscience Unit, UCL ${ }^{2}$ Centre for Artificial Intelligence, UCL ${ }^{3}$ Inria London ${ }^{4}$ Statistical Laboratory, University of Cambridge ${ }^{5}$ Institut de Mathématiques, Université de Toulouse

Introduction

Two-sample problem

Given independent samples $\bullet \mathbb{X}_{m}:=\left(X_{1}, \ldots, X_{m}\right)$ where $X_{i} \stackrel{\text { iid }}{\sim} p$ in \mathbb{R}^{d},

- $\mathbb{Y}_{n}:=\left(Y_{1}, \ldots, Y_{n}\right)$ where $Y_{i} \stackrel{\text { iid }}{\sim} q$ in \mathbb{R}^{d},
can we decide whether or not $p \neq q$ holds?
This corresponds to testing the hypothesis $\mathcal{H}_{0}: p=q$ against $\mathcal{H}_{a}: p \neq q$.

Uniform separation rates \& Minimax rate

Given a test Δ, a class of functions \mathcal{C} and some $\beta \in(0,1)$, what is the smallest value $\rho>0$ such that Δ has power at least $1-\beta$ against all alternative hypotheses satisfying $p-q \in \mathcal{C}$ and $\|p-q\|_{2}>\tilde{\rho}$? (\star)
$\rho(\Delta, \mathcal{C}, \beta):=\inf \left\{\tilde{\rho}>0: \sup _{(p, q):(t)} \mathbb{P}_{p \times q}\left(\Delta\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)=0\right) \leq \beta\right\}$
Uniform separation rates are rates taking the form $C(m+n)^{-r}$. The smallest rate achieved by a test of level a is the minimax rate

$$
\underline{\rho}(\mathcal{C}, a, \beta):=\inf _{\Delta_{a}} \rho\left(\Delta_{a}, \mathcal{C}, \beta\right) .
$$

For Sobolev balls $\mathcal{S}_{d}^{s}(R)$, minimax rate $\underline{\rho}\left(\mathcal{S}_{d}^{s}(R), a, \beta\right)$ is $(m+n)^{-2 s /(4 s+d)}$
$\mathcal{S}_{d}^{s}(R):=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}\|\xi\|_{2}^{2 s}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \leq(2 \pi)^{d} R^{2}\right\}$

Maximum Mean Discrepancy

The Maximum Mean Discrepancy $\operatorname{MMD}(p, q)$ between p and q is

$$
\mathbb{E}_{X, X^{\prime} \sim p}\left[k\left(X, X^{\prime}\right)\right]-2 \mathbb{E}_{X \sim p, Y \sim q}[k(X, Y)]+\mathbb{E}_{Y, Y^{\prime} \sim q}\left[k\left(Y, Y^{\prime}\right)\right] .
$$

A quadratic-time estimator $\widehat{\mathrm{MMD}}_{k}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$ is defined as
$\frac{1}{m(m-1)} \sum_{1 \leq i \neq i^{\prime} \leq m} k\left(X_{i}, X_{i^{\prime}}\right)+\frac{1}{n(n-1)} \sum_{1 \leq j \neq j^{\prime} \leq n} k\left(Y_{j}, Y_{j^{\prime}}\right)-\frac{2}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} k\left(X_{i}, Y_{j}\right)$.
When $m=n$, another quadratic-time estimator $\widehat{\operatorname{MMD}}_{k}^{2}\left(\mathbb{X}_{n}, \mathbb{Y}_{n}\right)$ is

$$
\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} k\left(x_{i}, x_{j}\right)-k\left(x_{i}, y_{j}\right)-k\left(y_{i}, x_{j}\right)+k\left(y_{i}, y_{j}\right) .
$$

We can simulate \mathcal{H}_{0} using permutations or a wild bootstrap to estimate the $(1-a)$-quantile and construct a non-asymptotic test of level a.

Kernels and choice of bandwidths

For bandwidths $\lambda \in(0, \infty)^{d}$, we work on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with the kernel

$$
k_{\lambda}(x, y):=\prod_{i=1}^{d} \frac{1}{\lambda_{i}} K_{i}\left(\frac{x_{i}-y_{i}}{\lambda_{i}}\right)
$$

for d characteristic kernels $K_{i} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ satisfying $\int_{\mathbb{R}} K_{i}(u) \mathrm{d} u=1$.
Two common ways to choose the bandwidths: • median heuristic

- splitting the data

Aim

Construct a non-asymptotic test which is optimal in the minimax sense.

Our contributions

Single test: construction

Consider $\widehat{M M D}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)$ and compute B simulated test statistics, let \hat{q}_{1-a}^{λ} be the $\lceil(B+1)(1-a)\rceil$-th biggest of those $B+1$ values, the single test is $\Delta_{a}^{\lambda}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right):=1\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)>\widehat{q}_{1-a}^{\lambda}\right)$

Single test: theoretical results

For $a \in\left(0, e^{-1}\right), \lambda_{1} \cdots \lambda_{d}<1$ and $B \in \mathbb{N}$ large enough, we have

$$
\rho\left(\Delta_{a}^{\lambda}, \mathcal{S}_{d}^{s}(R), \beta\right)^{2} \leq C(d, s, R, \beta)\left(\sum_{i=1}^{d} \lambda_{i}^{2 s}+\frac{\ln \left(\frac{1}{a}\right)}{(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}\right)
$$

For $\lambda_{i}^{*}=(m+n)^{-2 /(4 s+d)}$, the test $\Delta_{a}^{\lambda^{*}}$ is optimal in the minimax sense

$$
\rho\left(\Delta_{a}^{\lambda^{*}}, \mathcal{S}_{d}^{s}(R), \beta\right) \leq C(d, s, R, a, \beta)(m+n)^{-2 s /(4 s+d)}
$$

Aggregated test: construction

Consider a collection Λ of bandwidths and some weights $\left(w_{\lambda}\right)_{\lambda \in \Lambda}$ such that $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$. The aggregated test Δ_{a}^{\wedge} rejects \mathcal{H}_{0} if one of the tests $\left\{\Delta_{u_{\mathrm{o}} w_{\lambda}}^{\lambda}\right\}_{\lambda \in \Lambda}$ rejects \mathcal{H}_{0} where
$u_{a}=\sup \left\{u>0: \mathbb{P}_{\mathcal{H}_{0}}\left(\max _{\lambda \in \Lambda}\left(\widehat{\operatorname{MMD}}_{\lambda}^{2}\left(\mathbb{X}_{m}, \mathbb{Y}_{n}\right)-\widehat{q}_{1-u w_{\lambda}}^{\lambda}\right)>0\right) \leq a\right\}$.
The probability can be estimated by a Monte-Carlo approximation and the supremum can be estimated using the bisection method.

Aggregated test: theoretical results

For $a \in\left(0, e^{-1}\right)$ and $B_{1}, B_{2}, B_{3} \in \mathbb{N}$ all large enough, $\lambda_{1} \cdots \lambda_{d} \leq 1$ for all $\lambda \in \Lambda$ and $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$, we have
$\rho\left(\Delta_{a}^{\Lambda}, \mathcal{S}_{d}^{s}(R), \beta\right)^{2} \leq C(d, s, R, \beta) \min _{\lambda \in \Lambda}\left(\sum_{i=1}^{d} \lambda_{i}^{2 s}+\frac{\ln \left(\frac{1}{a w_{\lambda}}\right)}{(m+n) \sqrt{\lambda_{1} \cdots \lambda_{d}}}\right)$.
Consider $\wedge:=\left\{\left(2^{-\ell}, \ldots, 2^{-\ell}\right): \ell \in\left\{1, \ldots,\left\lceil\frac{2}{d} \log _{2}\left(\frac{m+n}{\ln (\ln (m+n))}\right)\right]\right\}\right\}$
and $w_{\lambda}:=\frac{6}{\pi^{2} \ell^{2}}$. Then, Δ_{a}^{\wedge} is (almost) optimal in the minimax sense

$$
\rho\left(\Delta_{a}^{\wedge}, \mathcal{S}_{d}^{s}(R), \beta\right) \leq C(d, s, R, a, \beta)\left(\frac{\ln (\ln (m+n))}{m+n}\right)^{2 s /(4 s+d)}
$$

and is adaptive (no dependence on the unknown parameter s of $\mathcal{S}_{d}^{s}(R)$).

Summary of key contributions

- (almost) optimal in the minimax sense

- wild bootstrap \& permutations

- outperforms state-of-the-art MMD tests
- outperforms state-of-the-art MMD tests • wide range of kernels

Experiments

Perturbed uniform

$P=\{0,1,2,3,4,5,6,7,8,9\}$ $Q 1=\{1,3,5,7,9\}$ $Q 2=\{0,1,3,5,7,9\}$ $Q 3=\{0,1,2,3,5,7,9\}$ $Q 4=\{0,1,2,3,4,5,7,9\}$ $Q 5=\{0,1,2,3,4,5,6,7,9\}$

References

[1] Mélisande Albert, Béatrice Laurent, Amandine Marrel, and Anouar Meynaoui. Adaptive test of independence based on HSIC measures. arXiv e-prints, pages arXiv-1902, 2019.
${ }^{[2]}$ IImun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of permutation tests. arXiv preprint arXiv:2003.13208, 2020
${ }^{[3]}$ Tong Li and Ming Yuan. On the optimality of gaussian kernel based nonparametric tests against smooth alternatives. arXiv preprint arXiv:1909.03302, 2019.
${ }^{[4]}$ Jonas M. Kubler and Wittawat Jitkritum and Bernhard Schölkopf and Krikamol Muandet. Learning Kernel Tests Without Data Spliting. arXiv preprint arXiv:2006.02286, 2020

