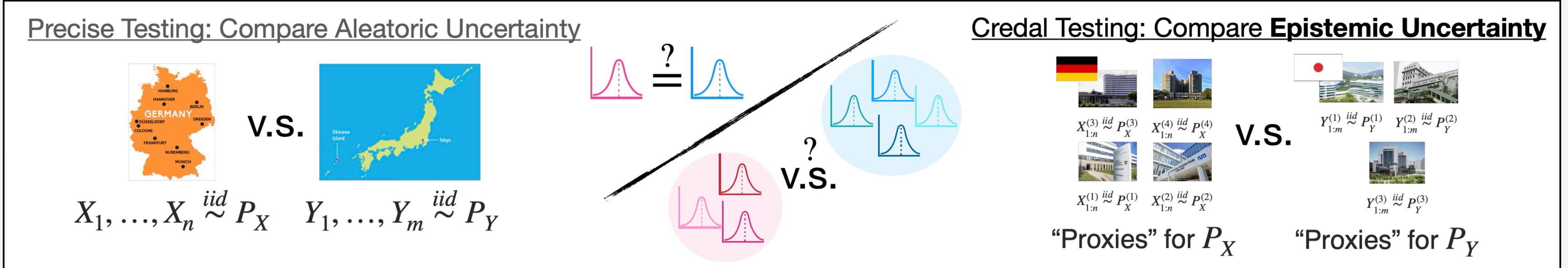
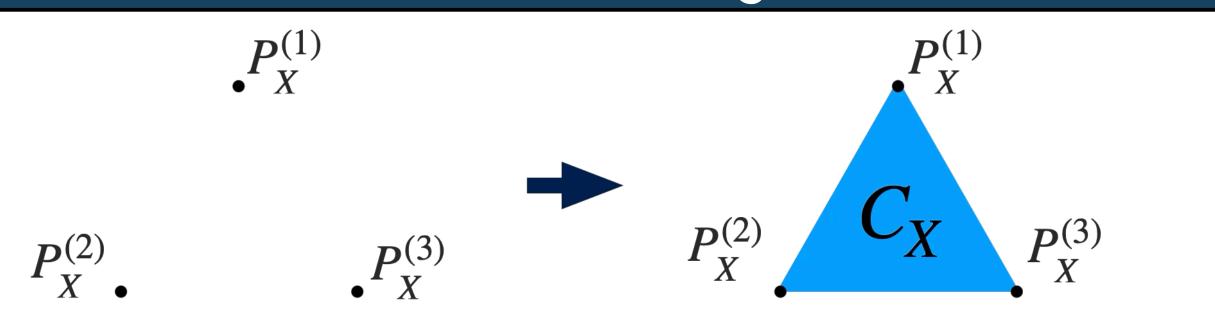
Credal Two-sample Tests of Epistemic Uncertainty Siu Lun Chau¹, Antonin Schrab², Arthur Gretton², Dino Sejdinovic⁴, Krikamol Muandet¹ ¹CISPA Helmholtz Center for Information Security, Germany ²University College London, UK ³University of Adelaide, Australia

01 Motivation: How to Test under Dataset Uncertainty?



Main Research Question: Can we still reason statistically about P_X and P_Y in light of Dataset Uncertainty?

02 Dataset Uncertainty -> Credal Set 03 Credal Hypotheses & Applications



Turning Physical Probabilities into Belief Probabilities

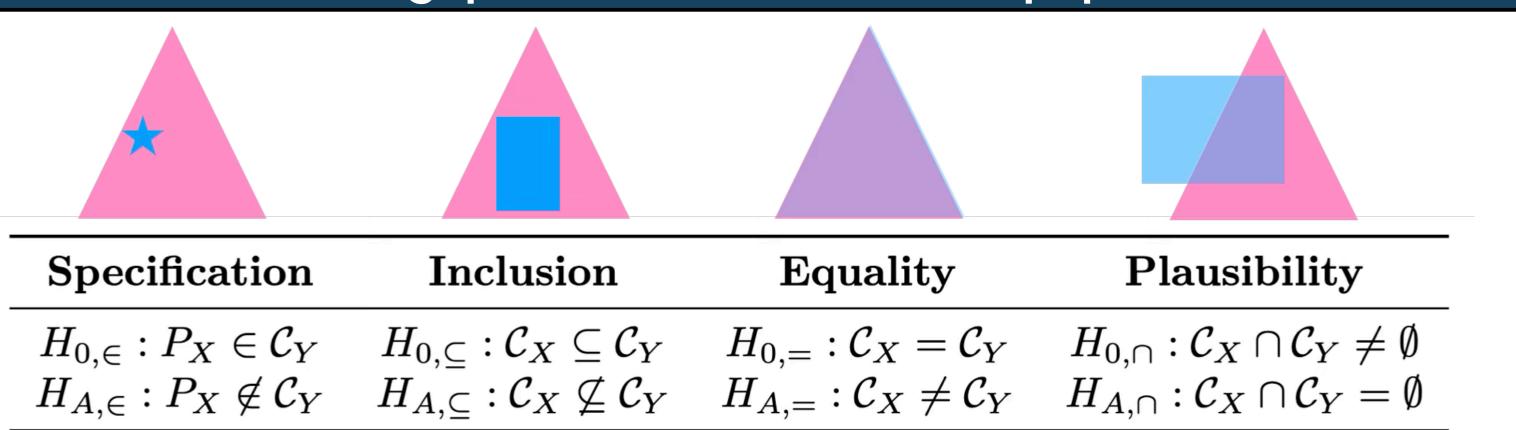
•**Credal Set** $C_X = CH\{P_X^{(1)}, \dots, P_X^{(m)}\}$ represents Epistemic Dataset Uncertainty

 Championed by Imprecise Probabilists, Quasi-Bayesian Decision Theorists, Robust Bayesians, Formal Epistemologists

04 How do We Do it? (Specification)

Notice $P_X \in C_Y \iff \exists \eta_0 \in \Delta_{r-1}, P_X = \eta_0^\top \mathbf{P}_Y)$

1. We start with $X_{1:n} \stackrel{iid}{\sim} P_X$, $Y_{1:m}^{(j)} \stackrel{iid}{\sim} P_Y^{(j)}$ for j = 1, ..., r, 2. Split data for estimation and testing based on ratio ρ .



• **Specification:** Testing finite mixtures, Credal predictor calibration, Credal set verification...

•Inclusion: Uncertainty comparison...

• Equality: Testing treatment effect under ambiguity...

• Plausibility: Distributionally robust two-sample test...

05 What's wrong & How to fix it?

Asymptotic Validity under Adaptive Splitting

Under $H_{0,\epsilon}$ and regularity assumptions, when n is large,

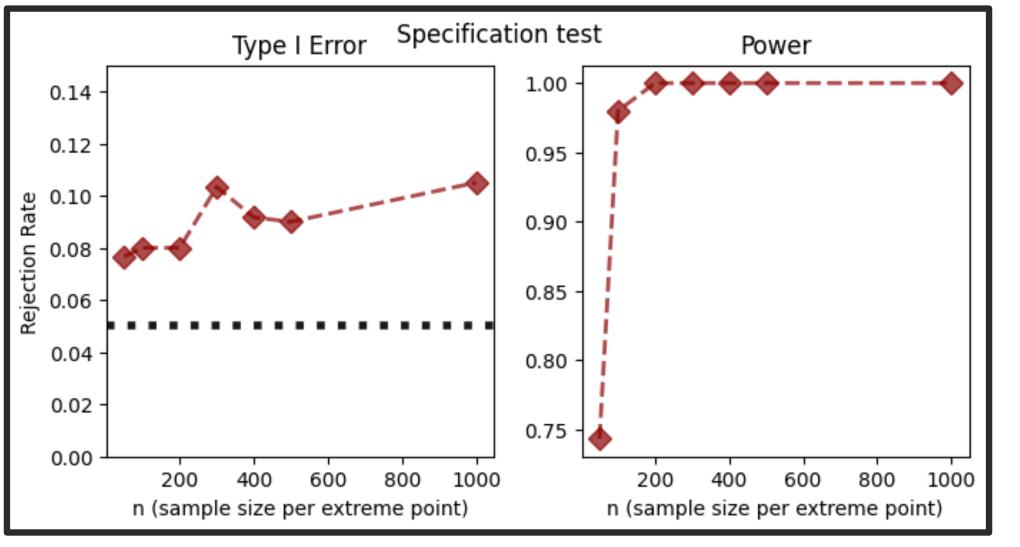
 $\left| \widehat{n_t \text{MMD}^2}(P_X, \hat{\boldsymbol{\eta}}^\top \mathbf{P}_Y) - n_t \widehat{\text{MMD}^2}(P_X, \boldsymbol{\eta}_0^\top \mathbf{P}_Y) \right| = O\left(\sqrt{\frac{n_t}{n}} \right)$

3. Perform **Epistemic Alignment**:

 $\hat{\eta} = \arg\min_{\eta \in \Delta_{r-1}} \operatorname{MMD}^{2}(P_{X}, \eta^{\top} P_{Y})$

4. Sample pseudo observations: $ilde{Y}_{1:n} \sim \hat{\eta}^{ op} \hat{\mathbf{P}}_{Y}$

5. Perform a **kernel two-sample test** on $X_{1:n}$, $\tilde{Y}_{1:n}$.



Fixed sample splitting —> Inflated Type I control (Invalid testing procedure)

Therefore, if ρ is chosen such that $\frac{n_t}{n_2} \rightarrow 0$, then

 $n_t \widehat{\mathrm{MMD}^2}(P_X, \hat{\boldsymbol{\eta}}^\top \mathbf{P}_Y) \xrightarrow{D} \sum \zeta_i Z_i^2$

that is, the same limiting distribution as if no estimation has happened. Furthermore, under $H_{A,\in}$,

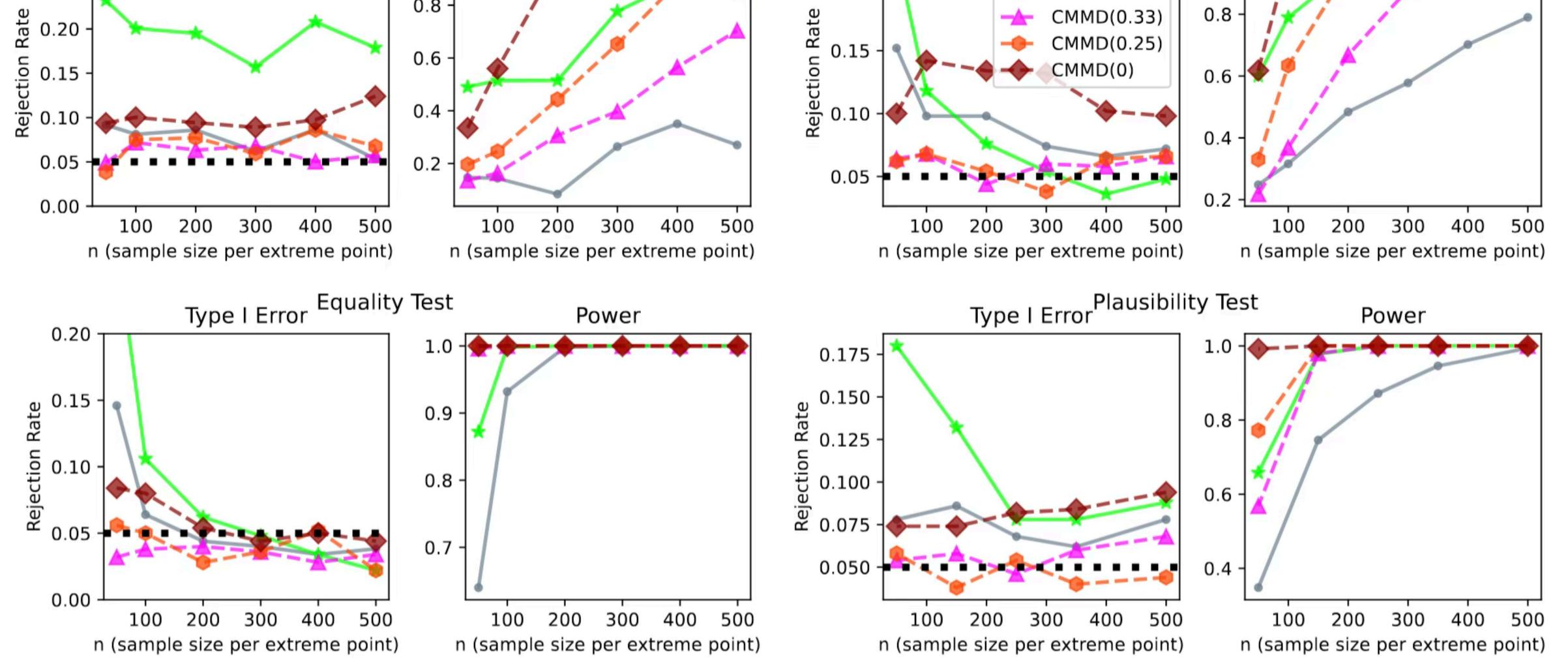
 $n_t \widehat{\mathrm{MMD}^2}(P_X, \hat{\boldsymbol{\eta}}^\top \mathbf{P}_Y) \to \infty$

•Intuition: As *n* grows, estimation error decreases, but tests get more powerful.

•Solution: Set the "right" balance between estimation accuracy and test power with adaptive splitting, e.g.

$$n_t = \sqrt{n_e}, \ n_t = n_e^{1/3}$$

06 Experiments with MNIST data		Check out more!
Type I Error Specification Test Power	Type I Error Inclusion Test 0.20 - MMDQ MMDQ*	Ask me •What is imprecise proba-



bilistic machine learning?

- How to conduct the rest of the tests?
- •How is this different to Bayesian test?
- •Where can I read about your work:

Adaptive splitting strategy yields valid test procedures

